Myra Lipes, MD

  • Researcher, Academic Faculty
  • Type 1 Diabetes
  • Immunobiology
Investigator
Associate Professor of Medicine, Harvard Medical School

Dr. Lipes is an Investigator in the Section on Immunobiology at Joslin and an Associate Professor of Medicine at Harvard Medical School. She received her medical degree from McGill University in Montreal. After completing her residency training in Pediatrics, she was a medical staff fellow in the Endocrinology Program at the National Institutes of Health. She has been the recipient of the Mary K. Iacocca Faculty Fellowship, a Harcourt General Charitable Foundation New Investigator Award, a Career Development Award from the American Diabetes Association and a Charles H. Hood Foundation Child Health Research Award.

Research Interests

The main focus of Dr. Lipe's laboratory is to understand the immunological basis of type 1 diabetes (T1D) and its associated cardiovascular disease (CVD) complications, an area they have pioneered. They examine disease mechanisms at molecular and cellular levels in both mouse models and patients with T1D.  Major questions include what initiates the loss of self-tolerance to islet beta cells or cardiomyocytes; what are the effector mechanisms and how to prevent this immune attack; and how major histocompatibility complex (MHC) molecules function in conferring susceptibility to autoimmunity. 

Starting with the unexpected discovery that humanized HLA-DQ8+NOD mice develop premature death from autoimmune myocarditis (inflammation of heart muscle), they showed that myocarditis is caused by α-myosin heavy chain (MyHC)-specific CD4+ T cells that escape thymic negative selection. They further showed that immune responses to α-MyHC are essential for the development of myocarditis, proving that α-MyHC is a primary autoantigen in this disease process. Current studies are focused on identifying the disease-triggering epitope(s) within the α-MyHC protein, with a view to developing therapeutic blockers to prevent or arrest autoimmune heart disease in T1D.     

In another set of translational studies, their group showed that the same alterations in immune function that confers risk for T1D contributes to the development of myocarditis following myocardial infarction (MI), which is the leading cause of death in T1D. They first showed that experimental MI triggers a chronic post-infarction autoimmune syndrome in NOD mice, characterized by destructive myocardial lymphocytic infiltrates, poor infarct healing, and the development of autoantibody and T cell responses against cardiac antigens.  They further showed that induction of tolerance to a-MyHC eliminated the anti-cardiac immune targeting and the development post-infarct autoimmunity, demonstrating that this disease process is antigen-driven and preventable. 

Extending these findings to patients with T1D, they developed a panel of sensitive and specific assays for cardiac autoantibody detection and demonstrated positivity in the majority of post-MI T1D patients. They further identified shared autoantibody expression signatures between post-MI T1D patients and acute myocarditis patients without T1D or MI, and have confirmed the presence of myocarditis in T1D patients with these expression signatures using non-invasive cardiac magnetic resonance imaging techniques. The laboratory is currently testing the hypothesis that clinically unrecognized cardiac autoimmunity contributes to poor CVD outcomes in large T1D populations, including the longitudinal DCCT/EDIC cohort, with the ultimate goal of improving the diagnosis and treatment of diabetic heart disease​.

Related Experts

BILH Headshot Avatar
Katherine Nelson, RN, CDCES Adult Diabetes, Type 1 Diabetes, Type 2 Diabetes, Gestational Diabetes
Sando Baysah Ojukwu, MD MPH
Sando Baysah Ojukwu, MD, MPH Pediatric Diabetes, Type 1 Diabetes
Shanti Serdy, MD
Shanti Serdy, MD Adult Diabetes, Type 1 Diabetes, Gestational Diabetes
William Sullivan, MD
William Sullivan, MD Type 1 Diabetes